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We have performed a numerical study on the transition of a cylindrical pipe flow under
the influence of a localized disturbance in the form of periodic suction and blowing
(PSB) applied at the pipe wall. We focus here on the so-called receptivity problem
where the spatial evolution of this disturbance is studied as it travels downstream
through the pipe. The study is carried out by means of two techniques: an eigenmode
expansion solution (EES) and a full nonlinear direct numerical simulation (DNS).
The EES is based on an analytical expansion in terms of the eigenfunctions of the
linear operator which follows from the equations of motion expressed in a cylindrical
coordinate system. The DNS is formulated in terms of a spectral element method.

We restrict ourselves to a so-called subcritical disturbance, i.e. the flow does not
undergo transition. For very small amplitudes of the PSB disturbance the results
of the EES and DNS techniques agree excellently. For larger amplitudes nonlinear
interactions come into play which are neglected in the EES method. Nevertheless, the
results of both methods are consistent with the following transition scenario. The PSB
excites a flow perturbation that has the same angular wavenumber and frequency as
the imposed disturbance itself. This perturbation is called the fundamental mode. By
nonlinear self-interaction of this fundamental mode higher-order harmonics, both in
the angular wavenumber and frequency, are generated. It is found that the harmonic
with angular wavenumber 2, i.e. twice the wavenumber of the fundamental mode, and
with zero frequency grows strongly by a linear process known as transient growth.
As a result the (perturbed) pipe flow downstream of the disturbance region develops
extended regions of low velocity, known as low-speed streaks. At large disturbance
amplitudes these low-speed streaks show the development of high wavenumber oscil-
lations and it is expected that at even higher disturbance amplitudes these oscillations
become unstable and turbulent flow will set in.

Our result agrees (at least qualitatively) with the transition scenario in a plane
Poiseuille flow as discussed by Reddy et al. (1998) and Elofson & Alfredson (1998).

1. Introduction
One of the most important discoveries made by Reynolds (1883) in his famous

experiments is, expressed in his own words,
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There were two critical values for the velocity in the tube,
the one at which steady motion changed into eddies,
the other at which eddies changed into steady motion.

To distinguish these critical values Reynolds introduced a dimensionless number
Re = UD/ν (with U the mean flow velocity, D the pipe diameter and ν the kinematic
viscosity) which since then has carried his name. The first Reynolds number, at which
steady motion changes into eddies, is called here the upper critical Reynolds number
Recru whereas the second at which eddies change into steady motion is called the lower
critical Reynolds number Recrl . In between these two Reynolds numbers the flow can
be either laminar or turbulent. In his original experiments, Reynolds found 12 830 for
Recru and 2020 for Recrl . Modern experiments have successfully raised Recru to 105

(see Draad, Kuiken & Nieuwstadt 1998 for a review). The Recrl , however, has stayed
close to its original value and is at present placed in the range 1760 < Recrl < 2300.

Theoretically, the upper bound of Recru can be obtained from linear stability theory
but it is generally accepted that Hagen–Poiseuille flow is linearly stable with respect to
all kinds of disturbances although a formal proof for non-axisymmetric infinitesimal
disturbances is still not available (see Lessen, Sadler & Liu 1968; Salwen, Cotton
& Grosch 1980 and Herron 1991 for the results of temporal stability theory; see
Gill 1965 and Garg & Rouleau 1972 for the results of spatial stability theory). This
sets the upper bound for Recru at infinity and it explains the large Recru observed
in the experiments. A lower bound for Recrl obtained from the energy method is
found to be 81.49 (Joseph & Carmi 1969; Schmid & Henningson 1994) which differs
strongly from the experimental values mentioned above. The big gap between theory
and experiment reflects our currently poor understanding of the transition scenario
of Hagen–Poiseuille flow. Even after more than a century since Reynolds’ work and
despite the efforts from numerous researchers this gap is still wide open. There are
two important reasons for this:

1. The linear stability operator L of Hagen–Poiseuille flow is not self–adjoint.
This is for instance the mathematical reason for the gap between Recru and Recrl

(see Dauchot & Manneville (1997)) and as a consequence a ‘bifucation’ transition
scenario, known to be valid for Taylor–Couette or Rayleigh–Bénard flow, is not
applicable here.

2. Linear stability theory provides no finite critical Reynolds number so that it
becomes difficult to use a transition scenario based on ‘secondary instability’ which
for instance has been successfully applied to plane Poiseuille flow and the Blasius
boundary layer. (Davey & Nguyen 1971; Patera & Orszag 1981; Orszag & Patera
1983).

In order to make progress several theoretical alternatives have been considered
which depart from a different base flow: the linear instability of the inlet flow
(Tatsumi 1952) or the instability of a nearly circular elliptical pipe flow (Davey
1978 and Kerswell & Davey 1996). However, the experimental results of Wygnanski
& Champagne (1973), Rubin, Wygnanski & Haritonidis (1980) and Darbyshire &
Mullin (1995) suggest that the transition process is insensitive to the shape of the
basic velocity profile on which the disturbances are introduced.

Another approach has been to rewrite the governing equations in terms of a
non-self-adjoint linear operator L and to consider its potential to support large
transient growth of the initial disturbance. This has been proposed recently as a
possible scenario for shear flow transition (see Trefethen et al. 1993; Criminale et al.
1997 and the references therein). Although the original idea can be traced back
to Kelvin (1887), its modern formulation in terms of a more elegant mathematical
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language has led to fruitful results. Transient growth in cylindrical Poiseuille flow
has been studied analytically by Bergström (1992, 1993b) and Schmid & Henningson
(1994), experimentally by Bergström (1993a, 1995b) and numerically by Boberg &
Brosa (1988) and by O’Sullivan & Breuer (1994a). Their conclusion is that significant
transient growth of the initial kinetic energy can occur at an early stage of disturbance
evolution, before the disturbance finally decays. A disturbance with unit azimuthal
wavenumber and without streamwise dependence (in terms of temporal theory) has
been found to have the largest amplification.

Despite transient growth, linear theory demands that a disturbance will finally decay.
Therefore, a nonlinear instability mechanism is required to sustain the amplified dis-
turbance towards turbulence. Such a process has been investigated in terms of various
low-dimensional nonlinear models in order to explain the transition mechanism (see
Waleffe 1997 and the references therein). For Hagen–Poiseuille flow, this has been done
by Bergström (1995a, 1998) and Tumin (1997). In nearly all of these low-dimensional
models the importance of an initial transient growth is emphasized. In a series of
papers, Waleffe (1995a, b, 1997) proposes a self-sustaining process where three separate
stages are identified. Transient growth plays a key role in the first stage to generate
streamwise low-speed streaks. Zikanov (1996) has implemented this self-sustaining
process in cylindrical Poiseuille flow and he finds that the modulated mean flow is
highly unstable. This approach can actually be characterized as a ‘secondary instabil-
ity’ theory where the secondary flow is provided by the linear transient effects instead
of the Tollmien–Schlichting waves in the traditional ‘secondary instability’ theory.

In spite of the important role of transient growth in the models cited above,
Dauchot & Manneville (1997) argue that this process is not a necessary component
for transition. To support such a theoretical hypothesis evidence should be provided in
terms of experimental and numerical results. Dauchot & Manneville (1997) themselves
give different hints for ‘natural’ and ‘triggered’ transition experiments. The ‘triggered’
transition only corresponds to one special path in the phase space of their nonlinear
model and each different initial parameter group corresponds to a different path.

Experiments on transitional pipe flow have mainly been concentrated on triggered
transition since an experiment on so-called ‘natural’ transition would theoretically
result in an infinite value for Recru. In all of these experiments, disturbances are intro-
duced in the flow at the pipe wall. The equivalent experiment in the boundary layer
is the ‘vibrating ribbon’ perturbation with well-known contributions by Schubauer &
Skramstad (1947) and Klebanoff, Tidstrom & Sargent (1962). The flow development
as a result of the introduced disturbance is generally denoted as the receptivity prob-
lem and this approach has been applied in studies of the boundary layer (Goldstein &
Hultgren 1989). For pipe Poiseuille flow, the term ‘receptivity’ has been introduced by
Tumin (1996). The early experiments on the transition in pipe flow did not consider
the details of the imposed disturbance and their influence on the transition process.
Since then it has been found that transition depends strongly on the disturbance de-
tails such as its amplitude, frequency and azimuthal wavenumber. Therefore, carefully
calibrated experiments are necessary. Some first experiments giving data of sufficient
detail have been performed recently by Darbyshire & Mullin (1995), Eliahou, Tumin
& Wygnanski (1998) and Draad et al. (1998). In these experiments disturbances are
introduced in the flow by means of periodic suction and blowing (PSB) at the pipe wall.

Another approach to obtain data on the transition process has been numerical
simulation which is becoming more and more important as result of the increasing
power of supercomputers (see Kleiser & Zang 1991 and Herbert 1991 for a review).
Nevertheless only a few results are available. The reason is that a numerical simulation
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of a PSB disturbance which is in principle a spatial evolution problem, requires
enormous computer resources (Kleiser & Zang 1991). For plane Poiseuille flow,
Danabasoglu, Biringen & Streett (1991) and Chung, Sung & Boiko (1997) have
studied the spatial evolution of a PSB disturbance. They pay special attention to the
active control of the inflow of Tollmien–Schlichting waves and not to the instability
mechanism induced by the PSB disturbance itself. With respect to cylindrical pipe flow,
Shan et al. (1999) have recently simulated the transition induced by PSB. They were
able to reproduce successfully the structures experimentally observed in transitional
pipe flow such as the ‘puff’ and ‘slug’ by introducing a local flow disturbance for
a finite time. Further numerical data on the spatial evolution of disturbances in
pipe flow are lacking. Such information is needed in order to explain the observed
experimental phenomena and to supplement the shortage of experimental data.

In the present paper new numerical data are provided by performing a simulation
study of the evolution of a PSB disturbance introduced at a localized region of the
pipe wall. Our aim is not only to provide new numerical data on transitional pipe flow
but more importantly to use the data obtained by two numerical techniques to study
the modes that are involved in the reponse of the flow to the PSB disturbance. Based
on these results, our objective is to propose a transition mechanism in cylindrical pipe
flow.

The outline of this paper is as follows. In § 2 the governing equations for our problem
are formulated. The eigenmode expansion is discussed in § 3. In § 4 the numerical
scheme and code validation are presented. The results are presented in § 5 subdivided
into a subsection in which we consider very small disturbance amplitudes for which
a linear approximation is justified and a subsection for large disturbance amplitudes
where nonlinear effects come into play. A discussion on the influence of various
parameters is given in § 6. We end with some conclusions in § 7. Three Appendixes
are added to provide further details about the formulation of the central boundary
condition in a cylindrical coordinate system, the properties of the linear spatial
evolution operator which describes the Hagen–Poiseuille flow and the derivation of
the boundary-value problem in terms of eigenfunctions.

2. Formulation of the problem
2.1. Governing equations

The continuity equation and the Navier–Stokes equations for the flow of a Newtonian
incompressible fluid expressed in vector notation read

∇ · v = 0, (2.1a)

∂v

∂t
+ v · ∇v = −∇p+

1

Re
∇2v, (2.1b)

where v is the velocity vector and p the static pressure. For a cylindrical pipe with
radius R, the laminar solution of (2.1) is the well-known parabolic Hagen–Poiseuille
flow with Umax the maximum velocity on the centreline of the pipe. The equations (2.1)
have been non-dimensionalized by R and Umax, and the Reynolds number appearing
in (2.1b) is the defined as Re = UmaxR/ν with ν the kinematic viscosity.

The Navier–Stokes equations written according to (2.1b) are expressed in the so-
called ‘convection form’. An alternative is the ‘rotation form’ given by

∂v

∂t
+ ω × v = −∇Π +

1

Re
∇2v, (2.2)

where ω = ∇ × v is the vorticity and Π = p + 1
2
|v|2 the total pressure. The ‘rotation
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Spatial evolving disturbance

Lf

x

r

h

Fringe region:
damping out the disturbance
back to Hagen–Poiseuille flow

Hagen–Poiseuille inflow: Periodic suction and blowing (PSB):

U = Umax  1– r2

R20 1 vdis = Av f (x) sin(h ) sin(xt) for x∈ [–1
2d, 12d ]

Figure 1. A sketch of the pipe geometry considered here; indicated are the inflow, the outflow,
the PSB disturbance and the coordinate system used in the simulation.

form’ is preferable for numerical simulation based on a spectral method such as
we will use in this study because of its conservation properties and economical
implementation (see Canuto et al. 1987, chapter 7).

We shall also use the component form of (2.1) formulated in terms of a cylindrical
coordinate system where x, r and θ denote the axial, radial and azimuthal direc-
tion respectively and where (ex, er, eθ) and (u, v, w) are the unit vectors and velocity
components in these directions. The equations in this coordinate system read

∂u

∂x
+

1

r

∂(rv)

∂r
+

1

r

∂w

∂θ
= 0, (2.3a)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂r
+
w

r

∂u

∂θ
= −∂p

∂x
+

1

Re
∇2u, (2.3b)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂r
+
w

r

∂v

∂θ
− w2

r
= −∂p

∂r
+

1

Re

(
∇2v − v

r2
− 2

r2

∂w

∂θ

)
, (2.3c)

∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂r
+
w

r

∂w

∂θ
+
vw

r
= −1

r

∂p

∂θ
+

1

Re

(
∇2w − w

r2
+

2

r2

∂v

∂θ

)
, (2.3d)

with

∇2 =
∂2

∂x2
+

1

r

∂

∂r

(
r
∂

∂r

)
+

1

r2

∂2

∂θ2
.

The Hagen–Poiseuille profile mentioned above reads in this coordinate system

V (r) = U(r)ex = (1− r2)ex, P (x) = P0 − 4

Re
x. (2.4a,b)

The capital letters V , U and P are used to distinguish this profile as the basic flow
on which we shall consider the development of disturbances in the next sections. P0

is defined as the static pressure at x = 0.

2.2. Boundary and initial conditions

As mentioned in the introduction we consider the evolution of a disturbance imposed
on the fundamental solution (2.4) in terms of periodic suction and blowing (PSB)
through a slot located at some position along the pipe wall. A sketch of the geometry
that we consider, is shown in figure 1.
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For the PSB disturbance the wall boundary conditions become

r = 1 : u = w = 0, v = vdis(x, θ, t) = Avf(x) sin (θ) sin (ωt), (2.5)

where ω is the disturbance frequency and Av the disturbance amplitude. Note that
this disturbance has angular wavenumber equal to one. A similar disturbance has
been used in the experiments of Draad et al. (1998). The distribution of the velocity
across the slot is given by a shape function f(x) which is non-zero for x ∈ [− 1

2
d, 1

2
d ]

with d the width of the PSB slot and with x = 0 as the centre of the PSB region.
Draad et al. (1998) assumed that in their experiments f(x) is constant and so did
Tumin (1996). For numerical reasons we choose here

f(x) =
1

2

(
cos

2πx

d
+ 1

)
. (2.6)

We will return to the shape function f(x) in § 6 where we discuss the influence of
various forms for f(x). It follows directly from (2.5) that the instantaneous total
disturbance mass flux is always equal to zero.

For the other boundary conditions we turn to the pipe centreline where the
equations (2.3) are singular. This singularity must be removed to ensure a finite
solution. To achieve this we impose a series of special constraints which the solution
should satisfy when r → 0 (see Appendix A).

As inflow condition we choose the Hagen–Poiseuille solution given by (2.4). This
is an approximation since the upstream effects of the imposed disturbance may
change the inflow from its parabolic form (see Appendix B, §B.3). Furthermore, in
laboratory experiments an ideal Hagen–Poiseuille profile is not easily obtained (Draad
& Nieuwstadt 1998). The outflow condition is implemented with help of the so-called
fringe method (see § 4.1).

As initial condition, i.e. at the start of the PSB disturbance, we set everywhere
the flow equal to the Hagen–Poiseuille profile (2.4a). Since we aim at the temporal
asymptotic solution of (2.1), the initial condition should be not important. The
laminar solution (2.4) seems a good choice since no additional initial disturbance will
be introduced so that possible temporal transients which can contaminate our spatial
analysis are avoided.

3. Eigenmode expansion
In view of the form of the disturbance velocity (2.5) we expect that the flow modes

generated by this disturbance can be expressed in terms of Fourier functions with
an azimuthal wavenumber m and a circular frequency nω. Let us denote these flow
modes by the number pair (m, n). The mode (±1,±1) which has the same angular and
time dependence as the disturbance is called the fundamental mode. The temporal
asymptotic response of (2.1) to the disturbance can then be written as the sum of the
fundamental disturbance modes and their harmonics (see Gaster 1965 for discussion
of this assumption for the case of a boundary layer). In the following we shall denote
this approach as the eigenmode expansion solution (EES). The formal solution of
(2.1) and (2.5) can now be expressed by the following double Fourier series:

v(r, θ, x, t) = V (r) +

∞∑
m=−∞

∞∑
n=−∞

v̂(r, x;m, n)ei(mθ−nωt), (3.1a)
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p(r, θ, x, t) = P (x) +

∞∑
m=−∞

∞∑
n=−∞

p̂(r, x;m, n)ei(mθ−nωt), (3.1b)

where V (r) and P (x) denote the basic solution (2.4). Note that (3.1) is not applicable
to a turbulent solution since in that case the temporal behaviour is not governed by
a periodicity with frequency ω as in (3.1). Thus, (3.1) is only valid for the situation
when no transition to turbulence occurs.

Given the fact that both the velocity v and the pressure p are real variables it can
be shown from (3.1) that

v̂(r, x;−m,−n) = v̂∗(r, x;m, n), p̂(r, x;−m,−n) = p̂∗(r, x;m, n), (3.2)

where the superscript ∗ denotes the complex conjugate.
By substitution of (3.1) in (2.3) the equations (2.3) can be transformed from physical

space (θ, t) to Fourier spectral space (m, n). The result reads

∂û

∂x
+

1

r

∂(rv̂)

∂r
+

im

r
ŵ = 0, (3.3a)

−inωû+U
∂û

∂x
+ v̂

dU

dr
+Nx = −∂p̂

∂x
+

1

Re
∇̂2û, (3.3b)

−inωv̂ +U
∂v̂

∂x
+Nr = −∂p̂

∂r
+

1

Re

(
∇̂2v̂ − 1

r2
v̂ − 2im

r2
ŵ

)
, (3.3c)

−inωŵ +U
∂ŵ

∂x
+Nθ = − im

r
p̂+

1

Re

(
∇̂2ŵ − 1

r2
ŵ +

2im

r2
v̂

)
, (3.3d)

where

∇̂2 =
∂2

∂x2
+

1

r

∂

∂r

(
r
∂

∂r

)
− m2

r2
.

The Nx,Nr, Nθ are components of the transformed nonlinear term which in spectral
space takes the form of a convolution product according to

N (r, x;m, n) =
∑
i+j=m

∑
k+l= n

v̂(r, x; i, k) · G(r, x; j, l),

with the velocity gradient tensor G given by

G = ∇̂û ex + ∇̂v̂ er + ∇̂ŵ eθ +
1

r
(−ŵ eθer + v̂ eθeθ),

where

∇̂ =
∂

∂x
ex +

∂

∂r
er +

ij

r
eθ.

By introducing two auxiliary variables, namely v̂x = ∂v̂/∂x, ŵx = ∂ŵ/∂x, and by
substituting (3.3a) into (3.3b), the equation system (3.3) can be rewritten as a first-
order differential equation in x which describes a spatial evolution problem. The
resulting system can then be expressed as

∂F

∂x
=LF + S , (3.4)

where L is the spatial linear evolution operator, F = (û, v̂, ŵ,−Re p̂, v̂x, ŵx)
T the

solution vector and S = Re (0, 0, 0, Nx, Nr, Nθ)
T the nonlinear interaction term (for

further details about the operator L refer to Appendix B or Tumin 1996). In the
Appendix B we also consider the eigenvalue problem for the linear operator L. Its
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eigenvalues and eigenfunctions denoted as (α, Fα), are used below to formulate an
analytical solution of (3.4)

The wall boundary conditions (2.5) in spectral space become

r = 1 : F1 = F3 = 0, F2 = φmnAv f(x), (3.5)

where

φmn =

{
1
4
mn when (m, n) = (±1,±1)

0 when (m, n) 6= (±1,±1).

For the conditions at the pipe centre where the solution F should remain finite, refer
again to Appendix A.

The system (3.4) and its associated boundary condition (3.5) is known as a re-
ceptivity problem (Tumin 1996). Let us consider a solution of this problem in terms
of an expansion in the eigenmodes of L mentioned above. The system (3.4) for
different Fourier modes (m, n) is coupled by the nonlinear interaction term S which in
principle leads to an analytically intractable problem. However, if we limit ourselves
to a disturbance with small amplitude Av � 1, the source term S can be simplified or
even neglected by dropping some or all of the high-order nonlinear terms, the details
of which will be discussed in § 3.1 and § 3.2. With Av � 1 the formal solution of (3.4)
and (3.5) can be obtained by applying a standard eigenmode expansion technique
which leads to the expression

F (r, x;m, n) =
∑
α

Xα(x)Fα(r;m, n), (3.6)

where Xα(x) is a coefficient function and the summation runs over all eigenvalues α
(with α = αr + iαi) of the operatorL for mode (m, n). This form will be denoted in the
following as the eigenmode expansion solution (EES). If all eigenmodes are stable,
the above expansion is valid everywhere for x ∈ (−∞,∞); otherwise it is valid in any
finite x-interval.

The eigenvalues and their corresponding eigenfunctions Fα for the modes (m, n) =
(±1,±1), (±2, 0) and (0, 0) and for ω = 0.4 and Re = 3000 are discussed in detail in
Appendix B where we also introduce the adjoint eigenvector Gα which is different
from Fα due to the non-normality of the operator L. However, some further remarks
regarding the properties of the eigenvalues α and their eigenmodes may be appropriate
here. Together with the frequency ω introduced in the Fourier expansion (3.1), the
real part αr of the eigenvalue α gives the phase velocity of the waves in which the
disturbance is expanded. The imaginary part αi denotes the amplification factor. For
ω > 0 a positive value of αr implies a downstream travelling wave or a positive
phase speed. If the propagation of the eigenmode, which is determined by the group
velocity, is now in the same direction as the phase velocity, αi > 0 would mean a
stable mode and αi < 0 an unstable mode. Although it has not been formally proven,
it is nevertheless accepted that all linear modes in cylindrical pipe flow are stable
and this is confirmed by our own DNS results. This means that for all downstream
moving modes αi > 0 and for all upstream moving modes αi < 0. Most of the earlier
work on spatial stability theory has been restricted to the downstream propagating
modes. However, in Appendix B, §B.3 where further details are presented, we show
that the upstream propagating modes cannot be neglected in this case and that they
should be taken into account for a complete description of the disturbance evolution.

Given the formulation of the solution of (3.4) in terms of eigenmodes we now
consider the approximation of the nonlinear interaction term S based on the constraint
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that Av � 1. We distinguish between the fundamental modes (m, n) = (±1,±1) and
the other modes (m, n) 6= (±1,±1).

3.1. Fundamental modes (m, n) = (±1,±1)

Given that Av � 1 we can simply drop the nonlinear term S in the equation for
the fundamental modes by assuming that the amplitudes of the other Fourier modes
(m, n) 6= (±1,±1) are at most of the same order of magnitude as the (±1,±1) modes
so that their contribution through the quadratic nonlinear term is negligible. The
fundamental modes (±1,±1) thus satisfy linear equation

∂F

∂x
=LF . (3.7)

As result of a standard eigenmode expansion applied to (3.7), we obtain an ordinary
differential equation (ODE) for Xα(x) given by

dXα

dx
= iαXα + AvCαf, (3.8)

where Cα = −φmnG∗α1|r= 1 with Gα1 the first component of the adjoint eigenvector Gα.
For a derivation of (3.8) refer to Appendix C.

The solution of (3.8) can be expressed as

Xα(x) = AvCαfα(x) eiαx,

where

fα(x) =

∫ x

x0

f(z) e−iαz dz. (3.9)

For downstream propagating modes with αi > 0 the initial point x0 becomes equal
to −∞ which means that at x only influence from the interval (−∞, x] can be felt.
Similarly, for the upstream propagating modes with αi 6 0, the initial point x0 = ∞.
Note that we also use the assumption that all the eigenmodes will decay so that
Xα(−∞) = Xα(∞) = 0.

The solution of (3.7) and (3.5) can then be expressed as

F (r, x;m, n) = Av
∑
α

Cαfα(x)Fα(r;m, n) eiαx. (3.10)

Given the discussion above, we find that the solution of the fundamental modes
is linearly dependent on the forcing amplitude Av . Therefore, when we consider the
kinetic energy of the disturbance energy (see § 5.1), it should be scaled with A2

v .

3.2. Harmonic modes (m, n) 6= (±1,±1)

To generate modes other than the fundamental we must take into account the
nonlinear interaction term S or alternatively the convolution product N . Given that
Av � 1,N can be decomposed asN = NO+No whereNO stands for a self-interaction of
only the fundamental modes (m, n) = (±1,±1) and No for all other interactions. It then
follows that NO(r, x;m, n) = O(v̂(r, x;±1,±1)2) and No(r, x;m, n) = o(v̂(r, x;±1,±1)2).
Consequently, No can be considered as a high-order term with respect to NO(r, x;m, n)
and can thus be neglected. The equation system (3.4) for mode (m, n) can be then
simplified to

∂F

∂x
=LF + SO, (3.11)
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where SO = Re (0, 0, 0, NOx, NOr, NOθ)
T is the source term which describes the contri-

bution to mode (m, n) by the quadratic nonlinear self-interaction of the fundamental
modes (m, n) = (±1,±1). The convolution product NO can be evaluated from the
solution for modes (±1,±1) according to

NO(r, x; 0, 0) =
∑
i=±1

∑
k=±1

v̂(r, x; i, k) · G(r, x;−i,−k),

NO(r, x; 0,±2) =
∑
i=±1

v̂(r, x; i,±1) · G(r, x;−i,±1),

NO(r, x;±2, 0) =
∑
k=±1

v̂(r, x;±1, k) · G(r, x;±1,−k),

NO(r, x;±2,±2) = v̂(r, x;±1,±1) · G(r, x;±1,±1).

This results implies that by self-interaction of the fundamental modes four additional
modes are generated, namely (0, 0), (0,±2), (±2, 0) and (±2,±2). In the following we
will call mode (0, 0) the mean perturbation mode and (±2, 0) the steady harmonic.
For convenience, we will denote hereafter the nine harmonic modes generated by
self-interaction as (m2, n2) and for the notation of the four fundamental modes we use
(m1, n1). Since modes (m1, n1) are decoupled from all others modes, it follows that the
harmonic modes are also decoupled and can thus be calculated individually.

A similar approach as used to derive the equations for (m2, n2), can be applied
to obtain equations for the higher-order modes beyond (m2, n2) but the procedure
becomes quite complicated. We stop here since those higher-order modes are assumed
to be not as important as (m1, n1) and (m2, n2).

For the modes (m2, n2) the boundary conditions (3.5) are homogeneous so that a
non-trivial solution depends on the source term SO(r, x). In order to find this solution,
the source term SO(r, x) must first be expanded as a summation of the eigenvectors
Fα(r;m, n) according to

SO(r, x) =
∑
α

hα(x)Fα(r;m, n),

where

hα(x) =

∫ 1

0

rG†α (r)SO(r, x) dr,

and where the superscript † denotes the Hermitian adjoint of the adjoint eigenvector
Gα.

Following a similar approach as for modes (±1,±1), the solution of (3.11) can then
be obtained as

F (r, x) =
∑
α

gα(x)Fα(r)e
iαx, (3.12)

where

gα(x) =

∫ x

x0

hα(z)e
−iαz dz,

with again x0 = −∞ when αi > 0 and x0 = ∞ when αi 6 0.
Since the harmonic modes (m2, n2) are generated by the quadratic nonlinear inter-

action of the fundamental modes which themselves scale with Av , the kinetic energy
of these harmonics should then be scaled with A4

v .
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Figure 2. Fringe function λ(x) in the fringe region. The fringe region extends from xstart to xend and
λmax is the maximum value of λ(x). ∆rise, ∆fall are regions where λ(x) rises from zero to its maximum
value or drops back from its maximum value to zero.

4. Numerical techniques and solution procedure
4.1. Direct numerical simulation

In this subsection we consider the numerical solution of the full set of nonlinear
equations (2.1a) and (2.2). The point of departure is a spectral code that has been
used to simulate a puff and slug in transitional pipe flow and for more information
we refer to Shan et al. (1999). Keeping the main structure of the code unchanged, we
have rewritten it in order to run on a parallel computer. Furthermore, a fringe method
has been implemented to accommodate a spatially evolving disturbance. Below we
will give some further details.

The spatial discretization is based on a spectral method applied to the governing
equations in cylindrical coordinates formulated in their ‘rotation’ form. Given the
natural periodicity in the azimuthal direction we adopt in this direction a Fourier col-
location method. The singular behaviour at r = 0 related to the cylindrical coordinate
system results in a very fine grid in the azimuthal direction when r → 0. In view of
numerical stability conditions this fact puts a strong restriction on our time step. To
circumvent this problem a spectral element approach is applied in the radial direction
with a single cylindrical element at the centre and annular elements surrounding it.
The outer boundaries of these elements are given by

rj = (1− rc)
{

ln

[
Ne − j
Ne − 1

(e− 1) + 1

]}1/2

+ rc, (4.1)

where j = 1, 2, . . . Ne are the indices of the elements and rc the radius of the central
cylindrical element. Inside each element, a Chebyshev collocation method is used
with Gauss–Lobatto collocation points. In the axial direction we also apply a Fourier
collocation method which means that our solution should be periodic in the axial
direction. Periodicity in the axial direction is at variance with the streamwise spatial
evolution of an imposed disturbance. To restore the periodicity we apply a so-called
fringe region at the end of the computational domain.

The fringe method used here has been proposed by Lundbladh et al. (1994). The
main task of a fringe region is to force the velocity profile near the outflow to a
prescribed inflow profile with minimal reflection. This is achieved by dividing the
computational domain into two regions in the streamwise direction: a region where
the Navier–Stokes equations (2.2) are left unmodified and which we will use to study
the development of the flow disturbance; and a fringe region where the equations are
modified by including a forcing term in the equations of motion. For this forcing term
we take λ(x)(u−v) which is added to the right-hand-side of (2.2). The u is a prescribed
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velocity and λ(x) the so-called fringe function. For more information about the fringe
method see Lundbladh et al. (1994) and Nordström, Nordin & Henningson (1997).

The fringe function λ(x) is chosen such that the velocity v approaches gradually
the prescribed velocity u at the end of the fringe region. In figure 2, the fringe
function λ(x) we have used in our simulations is shown. In particular we have chosen
∆rise = 5

16
Lf and ∆fall = 3

16
Lf where Lf = xend − xstart is the total length of the fringe

region. The prescribed velocity u which can in principle be chosen freely within the
constraint of a divergence-free flow field, is for our case the parabolic profile (2.4).
Periodicity is now satisfied and the Fourier spectral method can be applied.

Based on the results of Lundbladh et al. (1994), we can estimate the factor by
which this disturbance velocity is damped after entering the fringe region. This factor
is

fd = exp

[
1

c

∫ xend

xstart

λ(x) dx

]
= exp

[
λmax

c

(
Lf − ∆rise + ∆fall

2

)]
= exp

(
3

4

λmaxLf

c

)
,

where c is the propagation speed of the disturbance which is taken equal to Umax in
our case. In our simulation fd is always chosen to be more than 106.

It is desirable to keep the fringe length Lf as short as possible but when the
damping rate fd remains fixed, a shorter Lf corresponds to a larger λmax. The value
of λmax is restricted, however, because in our simulation the forcing of the fringe
is imposed in the advection time step which is discretized in terms of an explicit
algorithm. Therefore, the magnitude of λmax is limited due to stability considerations
which means that Lf has a lower bound.

The spatially discretized system of equations is integrated as a function of time
by means of a time-splitting method with the help of a stiffly stable scheme (Kar-
niadakis, Israeli & Orszag 1991). The so-called ‘time-splitting errors’ which violate
the divergence-free constraint near the boundary are removed by using an improved
pressure boundary condition (Tomboulides, Israeli & Karniadakis 1989; Karniadakis
et al. 1991) and by applying the Green’s function correction (Marcus 1984). The non-
linear term v×ω is evaluated by means of a pseudo-spectral technique and de-aliased
with the help of the 3

2
-rule.

The PSB region where the disturbance is added to the flow is centred at x∗c = 1.5π
with d = π as its width. The notation x∗ denotes the coordinate used in our numerical
computations which has its origin at the inflow cross-section of the calculation domain
(note that the coordinate x which we will use to present our results has its origin at
the centre of the disturbance region, x∗c). For a discussion of the location of the PSB
region and its effects we refer to Appendix B, §B.3.

4.2. Computational details

We have carried out several computations with the DNS code using various values for
Av . The details are given in table 1 where we also indicate the number of grid points
that we have used in each coordinate direction. In order to compare our resolution
with previous numerical simulations we present the grid size normalized in terms of
so-called viscous wall units as indicated by a superscript +. The pipe radius in this
normalization becomes R+ ≈ 114.5. In the radial direction the first grid point from
wall lies at y+ ≈ 0.125. The maximum grid spacing in the radial direction is located
at the pipe centre and is equal to ∆y+ ≈ 6.767. This radial resolution is comparable
with the well-resolved simulation of a turbulent channel flow given by Kim, Moin &
Moser (1987). For the azimuthal direction with the highest resolution (nθ = 32), the
grid spacing reaches a minimum value (∆r∆θ)+ ≈ 0.33 near centreline and maximum
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Av nx × nr × nθ Lx Lf

0.001 128× 53× 16 32π 4π
0.015 128× 53× 16 32π 8π
0.025 128× 53× 16 32π 8π
0.03 128× 53× 16 32π 4π
0.031 128× 53× 32 32π 8π
0.0325 512× 53× 32 32π 8π

Table 1. Computational details for DNS realizations used in this paper. Av is the disturbance
amplitude, nx, nr and nθ are the numbers of grid points in the axial, radial and azimuthal directions
respectively (including the grid points in fringe region), Lx is the length of pipe and Lf the length
of fringe region. The minimum grid spacing in the r-direction ∆rmin = 0.0011 while the maximum
value ∆rmax = 0.0591. In all simulations, four spectral elements are used in the radial direction
with the radius of the central element rc = 0.1. With five collocation points for the central element
and seventeen collocation points for the other elements, the number of radial grid points becomes
nr = (4− 1)× (17− 1) + 5 = 53.

value (R∆θ)+ ≈ 22.49 at wall. This azimuthal resolution is somewhat worse than the
well-resolved turbulent pipe flow simulation given by Eggels et al. (1994).

The bottleneck is the spatial resolution in the axial direction where we have the
longest spatial extent. Zang, Krist & Hussaini (1989) have shown that the effect of
resolution can be very large. This is confirmed by our own experience and an example
of the effect of resolution is shown in figure 3. We see that for a coarse resolution
transition occurs and the flow becomes turbulent whereas for the largest resolution
the flow stays laminar. In the following sections we shall only present results obtained
for each Av at the highest resolution as given in table 1 for which we are confident to
have obtained a grid-independent solution.

The DNS has been carried out on the 10 processor Cray-J90 of the Delft University
of Technology and on the 12 processor Cray-C90 of the Academic Computing Services
Center (SARA) in Amsterdam.

4.3. Code verification

The original code for temporal simulation has been extensively tested for its algorithm
performance and stability properties (Shan et al. 1999). Here, we have carried out some
additional verification for the new code which concerns the efficiency of parallellization
and its ability to simulate the spatial evolution of a disturbance.

Parallel efficiency

In figure 4 the speed-up of the parallel DNS code is shown based on the run-time
record of a computation on a Cray J90. The overhead when using more CPUs is
partially due to the imperfect running environment where we have to share CPUs with
other users. Given this fact, the efficiency of the parallellization is quite satisfying. In
most of our calculations we have used four CPUs.

Evolution of the least stable mode

A simple method to test the DNS code for its ability to simulate the evolution
of a disturbance is to perform a computation of the evolution of the least stable
eigenmode obtained from spatial linear stability theory (for a general review on linear
stability refer to Drazin & Reid 1981 and also to Appendix B for some special
results concerning the Hagen–Poiseuille flow that we consider here). To generate the
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Figure 3. Disturbance energy Edis(x) for the case Av = 0.0325 as a function of x for different modes
and different numerical spatial resolution as indicated: (a) (m, n) = (±1,±1); (b) (m, n) = (±2, 0)
and (c) (m, n) = (0, 0). The −·−·− indicates PSB region. See § 5.1 for the introduction of disturbance
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Figure 4. Speed-up for 128×53×16 mesh on a Cray J90. The speed-up is defined as the CPU time
per time step on one processor divided by the CPU time per time step on more than one processor.

forcing term in our fringe method, we take a linear combination of the least stable
eigenmodes at Re = 3000 with (m,ω) = (±1,±0.5). The combination is chosen such
that a real velocity field u is generated as required by our DNS code. The amplitude
of this flow field should be chosen sufficiently small so that nonlinear effects may be
neglected.
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Figure 5. Spatial evolution of the disturbance energy Edis(x) for the least stable eigenmode
(m = 1, ω = 0.5,Re = 3000. DNS mesh is 32 × 53 × 16; the dash-dotted vertical line indicates
the start of the fringe region).

The evolution of the eigenmodes is governed by the imaginary part αi of the
eigenvalue α which leads to an exponential decay of the disturbance energy (see § 5.1)
with exponent −2αi. The results obtained with the DNS are shown in figure 5 in
comparison with this exponential decay. From the computed results we estimate αi

as 1
2

ln [Edis(x)/Edis(0)]/x with as result αi = −0.03293 ± 0.00056 while from linear
theory one finds αi = −0.03315. The agreement is quite acceptable and is taken as
proof of the correctness of our code.

This test case also shows the capability of the fringe method to restore the flow to
the given inflow condition. This can be seen in figure 5 where in the fringe region
the disturbance energy returns to the energy of the inflow profile. Furthermore, the
calculation shows that the influence of reflection by the fringe region is limited to a
region with a length of about 1

2
Lf in front of the fringe region.

Comparison between the EES and DNS solution

In this subsection we consider the solution of both the DNS and the EES for a
disturbance velocity according to (2.5) with Av � 1. This can be considered as a
verification of both methods.

In § 5.2 the results of the DNS and the EES will be considered in full detail in
particular with respect to the evolution of disturbances downstream of the disturbance
region. Therefore, we will limit ourselves here to the results at three important x-
positions within the disturbance region itself, namely x = ± 1

2
π and x = 0 which are

the two edges and the centre point. For the DNS we take Av = 10−3. Note that
the solution of the EES is in principle independent of Av . The two edges of the
PSB region, i.e. x = ± 1

2
π, are actually the lower or upper limit of the integral (3.9)

since f(x) is zero outside the PSB region. This means for x = − 1
2
π, i.e. the left edge

of the PSB region, that there can be no downstream travelling eigenmodes and for
x = 1

2
π, i.e. the right edge, no upstream travelling eigenmodes. At the centre of the

PSB region, x = 0, a large number of eigenmodes are excited each with comparable
amplitudes. Therefore it will turn out to be difficult to obtain an accurate solution at
this position with the linear eigenmode expansion method.
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the left-hand edge of the PSB region (Re = 3000, ω = 0.5).

In figures 6(a) and 7(a), the profiles of radial velocity v̂ at x = ± 1
2
π for mode

(m, n) = (1, 1) are shown as obtained both with the DNS and the EES. The agreement
between both solution techniques is very good. A similar agreement is also found for
û and ŵ (not shown here). This agreement can be considered as a further validation
of our DNS code but it has also been exploited in determining the propagation
properties of the various eigenmodes as discussed in Appendix B, §B.3.

A relatively large deviation is observed, however, for the real part of pressure p̂ (see
figures 6b and 7b). To explain this fact we show the first-order x-derivative of v̂ in
figure 8(a) where a deviation between the DNS and the EES is even more apparent.
The reason for this deviation is the fact that the discrete shape function f(x) as
applied in the DNS is non-zero outside the PSB region x∈ (− 1

2
π, 1

2
π) (see figure 8b).

This is a consequence of the limited number of grid points which are used to represent
the shape function in the DNS. As can be seen later in § 5.2, this disagreement has
no significant influence on the further evolution of the disturbance.

In figure 9, we show the profiles of v̂, ŵ at x = 0 for mode (m, n) = (1, 1) both for the
DNS results and for two eigenmode solutions based on a summation of 114 and
324 eigenmodes respectively. For the azimuthal velocity ŵ, which has a homogeneous
boundary condition, the agreement between the DNS and EES is very good even with
114 eigenmodes. For the radial velocity v̂, which has an inhomogeneous boundary
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condition, the agreement is not as good. This is caused by a Gibbs phenomenon
because the EES is forced to satisfy a non-zero boundary condition at r = 1.
Fortunately, the large near-wall oscillations are found to have negligible effects on the
evolution of the fundamental modes (±1,±1) outside the PSB region. This fact has
been verified by adding more eigenmodes and by comparing the results with those
obtained with 324 eigenmodes. No significant difference is observed outside the PSB
region. This conclusion is consistent with figure 6 where the solution is shown for
x = 1

2
π which is downstream of x = 0.

We shall not present here results for the harmonic modes (m2, n2). For these modes
we cannot expect a similarly good agreement between the EES and the DNS results
as for the fundamental modes (m1, n1), for three reasons:

1. The source term SO in (3.11) for modes (m2, n2) is computed from the linear
solution for the modes (m1, n1). It has been shown above that a fully accurate solution
of modes (m1, n1) by means of an eigenmode expansion is not possible due to a Gibbs
phenomenon for the radial velocity. Therefore, we expect the agreement between the
DNS and the EES for the higher modes to be worse;

2. The DNS is actually a simulation for the full nonlinear Navier–Stokes equa-
tions and if we want a good approximation of its result by the eigenmode solu-
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tion for (m2, n2), the following constraints must be satisfied: | v̂(r, x;m3+, n3+) | �
| v̂(r, x;m2, n2) | � | v̂(r, x;m1, n1) | � 1 (where m3+, n3+ stand for the Fourier modes
other than m1, n1 and m2, n2). Furthermore, the amplitude of the modes (m2, n2) should
be larger than the lower bound of numerical round-off. As can be seen later in § 5.2, it
is very difficult to satisfy all of these constraints simultaneously because of the large
transient growth of modes (±2, 0);

3. The shape function f(x) used in the EES and the DNS is actually different
because of the numerical discretization (see figure 8b).

In spite of the arguments presented above, we conclude that a reasonable quantita-
tive agreement is obtained between linear EES solution and DNS results. Therefore,
both methods will be used to compute the evolution of a disturbance. In the following
sections we will see that the most important features of the disturbance evolution are
captured by both the EES and the DNS.

5. Results
In this section we discuss the results obtained with the eigenmode expansion

solution (EES) and with the full nonlinear direct numerical simulation (DNS). We
concentrate on a single PSB case with ω = 0.5 as the basic disturbance frequency
and m = 1 for the angular wavenumber. The selected Reynolds number, Re = 3000,
in our simulation is slightly larger than the experimentally observed lower critical
Reynolds number Recrl ≈ 2200.

To present our results we will use the disturbance energy which is introduced
in the following subsection. The results of the computation are discussed in the
two subsequent subsections. First, we consider the so-called linear regime which is
characterized by a very small disturbance amplitude Av . The downstream evolution
of all dominant disturbance modes such as the (m1, n1) and (m2, n2) modes is then
determined by linear processes. As pipe flow has been found to be linearly stable, all
modes decay although transient growth can be quite prominent in the initial phase.
Secondly we consider the results when the disturbance amplitude is increased but
stays subcritical. In particular we consider the case when the flow is very close to
transition. Nonlinear effects beyond the self-interaction of the fundamental modes
become important now. Nevertheless, the main aspects found for the linear regime
seem to remain valid at least qualitatively.

5.1. Disturbance energy Edis

We aim to study the streamwise spatial evolution of the disturbance introduced at
the pipe wall by applying the boundary condition (2.5). This disturbance introduces a
perturbation velocity with frequency ω and angular wavenumber m = 1 superposed
on the basic parabolic flow (see § 5.2 and § 5.3). A measure by which to analyse the
results is the kinetic energy of the disturbance velocity.

In § 3 we have seen that the disturbance velocity can be expressed in Fourier
spectral space by (3.1). The contribution to the total disturbance energy due to the
modes (±m,±n) denoted by Edis(x;m, n), is then given by

Edis(x;m, n) =
∑
j=±m

∑
k=±n

1

T

∫ τ+T

τ

∫ 2π

0

∫ 1

0

1
2
|v̂(r, x; j, k)ei(jθ−kωt)|2 r dr dθ dt

= πσm
∑
k=±n

∫ 1

0

|v̂(r, x;m, k)|2 r dr. (5.1)



Spatial evolution of a periodic disturbance in pipe Poiseuille flow. Part 1 199

10–6

10–8

10–10

10–12

10–14

10–16

0 5p 10p 15p 20p

x

Edis
R(m,n)

 (±1,±1)
 (±2,0)
 (±1,±1)
 (±2,0)

(m,   n)
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large deviation for mode (±2, 0) at small amplitude (Edis < 10−13) is mainly due to the numerical
round-off of the DNS results.

Here σm = (2 − δm0), T = 2π/ω and τ is an arbitrary starting time subject to the
condition that the asymptotic temporal state has been reached. We note that this
definition can only be used when there is a dominant fundamental frequency present
in our flow. This means for instance that (5.1) is not useful for turbulent flows.

The disturbance energy for azimuthal mode m is then defined as the sum over all
temporal modes:

Edis(x;m) =
∑
n> 0

Edis(x;m, n). (5.2)

The total disturbance energy follows as

Edis(x) =
∑
m> 0

∑
n> 0

Edis(x;m, n). (5.3)

This latter definition can be extended to turbulent flow by performing in that case
a time average instead of the summation over modes (m, n). This extension has been
applied to obtain the results shown in figure 3.

A different measure of kinetic energy concerns its temporal evolution integrated
over the whole flow domain. This is defined as

Kdis(t) =

∫∫∫
1
2
|v(x, r, θ, t)− V (r)|2 r dx dr dθ. (5.4)

5.2. Linear regime

In this subsection we consider the development of a very small disturbance and in
our DNS we take Av = 0.001. The solution of the eigenmode expansion does not
depend on a particular choice for the amplitude of the disturbance.

In figure 10 we show the evolution of the total disturbance energy and its subdivision
into the fundamental modes (±1,±1) and the steady harmonics (±2, 0). We find that
the total energy is dominated by the fundamental modes before x ≈ 4π and by the
steady harmonics after x ≈ 7π. The contribution by the other modes is found to be
negligible. We have argued in § 3 that the modes (±2, 0) are generated by nonlinear
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Figure 11. Spatial evolution of the disturbance energy Edis(x; 1, 1) (Re = 3000, ω = 0.5), plotted in
(a) linear and (b) logarithm coordinates.

self-interaction of the fundamental modes but in view of the fact that the further
nonlinear interactions turn out to be very small, they evolve by linear processes such
as transient growth and exponential decay. Therefore, we call this case the linear
regime.

Let us now look at the evolution of the individual modes in more detail. In
figure 11 the spatial evolution of the fundamental modes (±1,±1) is illustrated. The
excellent agreement between the EES and DNS results is apparent. We can see that
the fundamental modes (±1,±1) decay almost exponentially downstream of the PSB
region. The decay rate is larger than that of the least stable eigenmode following
from linear stability theory which is equal to −2αi = 0.06630 (see § 4.3). The reason
for this is that the introduced disturbance has its largest amplitude near the pipe wall
while the least stable eigenmode has its largest amplitude near the centreline of the
pipe (Tumin 1996).

The behaviour of the higher harmonics (m2, n2) is illustrated in figure 12. For the
steady harmonics (±2, 0) shown in figure 12(c), a large transient energy growth is
observed downstream of the PSB region (note the different vertical scale). This growth
lasts for a quite long distance, i.e. to x ≈ 15π. In figure 10 we have already seen that
as a result of this transient growth the energy of mode (±2, 0) becomes substantially
larger than the energy of the fundamental mode. Nevertheless, the fundamental modes
evolve according to a linear decay process and thus do not feel the presence of these
higher harmonics. We will return to this in the next subsection when we consider
higher disturbance amplitudes. For the other (m2, n2) modes, transient growth is also
found but with a peak values three to four orders smaller than for mode (±2, 0) (see
figure 12a, b, d).

In figure 13 we show the velocity components generated by the steady harmonics
(±2, 0). This velocity field implies a streaky structure because the amplitude of the
axial velocity |û| is two orders of magnitude larger than the other two velocity
components. The presence of these streaks will be shown more clearly in the next
subsection.

By means of a temporal linear analysis for optimal transient growth in Hagen–
Poiseuille flow, Bergström (1993b) and Schmid & Henningson (1994) have shown
that a large amplification exists for disturbances with small streamwise wavenumber
α � 1 and small azimuthal wavenumber m. In particular they show that modes
(m, α) = (±1, 0) have the largest amplification and modes (±2, 0) have the second
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Figure 12. Spatial evolution of the disturbance energy for the Fourier modes which are gen-
erated from the quadratic nonlinear interaction of modes (±1,±1) (Re = 3000, ω = 0.5). The
insets in (b) and (d) are plotted in logarithm coordinates. Note the different scale for (c).
(a) Edis(x; 0, 0); (b) Edis(x; 0, 2); (c) Edis(x; 2, 0); (d) Edis(x; 2, 2).

largest. However, the modes (±2, 0) show almost up to their maximum a larger
growth rate than the modes (±1, 0). These results for the temporal analysis seem
consistent with our spatial simulation because in both cases it appears that a streaky
structure (manifested by a small streamwise wavenumber α) has the largest potential
for transient growth. Another confirmation of this result is given by Lundbladh et al.
(1994) who discuss a spatial simulation for the evolution of a pair of oblique waves
(β,±ω) in plane Poiseuille flow where β denotes the spanwise wavenumber. They also
find large transient growth for the steady harmonic (2β, 0).

5.3. Nonlinear regime

When the disturbance amplitude Av becomes large, nonlinear interaction is no longer
negligible. Nevertheless, for a moderate disturbance amplitude, the flow remains
laminar and exhibits a periodic behaviour in response to the imposed disturbance.
This is shown in figure 14 where the periodic behaviour is clearly illustrated by the
inset. Let us now consider how the most important modes, i.e. (±1,±1), (±2, 0) and
(0, 0), behave for various disturbance amplitudes: Av = 0.015, 0.025, 0.031, 0.0325.

In figure 15(a), we show the evolution of the disturbance energy for the funda-
mental modes (±1,±1). For these fundamental modes the deviation from the EES
becomes more and more prominent as Av increases. Apart from the peak in the
disturbance region, we find additional energy peaks as Av increases. Nevertheless, for
all disturbance amplitudes the (±1,±1) modes eventually decay.
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Figure 14. Temporal evolution of the total disturbance energy Kdis(t) with a disturbance
amplitude Av = 0.03 (Re = 3000, ω = 0.5). T = 2π/ω is the disturbance period.

Next we consider the steady harmonics (±2, 0) for which we have found a large
transient growth in the previous subsection. The results for various amplitudes Av are
shown in figure 15(b). Here we find a similar growth but the peak value of Edis(x; 2, 0)
becomes smaller as Av increases. This must be due to nonlinear interactions and is
consistent with the temporal analogue discussed by O’Sullivan & Breuer (1994b) and
by Bergström (1995a) for the transient behaviour of disturbance with finite amplitude.

Although both the modes (±1,±1) and (±2, 0) deviate from the linear EES results,
the qualitative features are still similar. For the mean perturbation mode, (0, 0), the
situation is different. This can be seen by comparing figure 12(a) with figure 15(c).
Since the steady harmonics (±2, 0) are the dominant modes (see figure 16), we suspect
that the growth of the mode (0, 0) is mainly due to the contribution of the quadratic
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the dominant modes (m, n) = (±1,±1), (±2, 0) and (0, 0). The disturbance amplitude is Av = 0.031.
The −·−·− delimit the PSB region.

self-interaction of the steady harmonics (±2, 0). Consequently the Edis(x; 0, 0) has been
scaled by the eighth power of the amplitude Av in figure 15(c).

In figure 16 we show the disturbance energy for the modes (±1,±1), (±2, 0)
and (0, 0) for the case of amplitude Av = 0.031. At the end of the domain the
total disturbance energy is determined by the steady harmonics (±2, 0) and mean
perturbation mode (0, 0) only. Considering the decay rates of these two modes one
may assume that further downstream only mode (0, 0) will survive. As also mentioned
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Figure 17. Spatial evolution of the disturbance energy for various modes. The (m1, n1) and (m2, n2)
modes are shown by thick lines and marked separately. The disturbance amplitude is Av = 0.031.

in the previous subsection we find that the modes (±1,±1) seem not sensitive to the
steady harmonics (±2, 0). The deviation of the modes (±1,±1) from the EES results
as shown in figure 15(a) should therefore be contributed to the interaction with mode
(0, 0) and with higher-order harmonics beyond the (±2, 0) modes.

In the remainder of this subsection we will show some detailed results for the two
largest amplitudes Av = 0.031 and 0.0325 which exhibit some prominent nonlinear
features.

It is not difficult to show by means of the computational results that only the
spectral groups (m, n) for which both m and n are even or for which both m and n are
odd can exhibit a large disturbance energy. For these groups we show in figures 17
and 18 the disturbance energy for Av = 0.031 and 0.0325, respectively. We find from
these figures that the disturbance energy for modes with low frequency (n = 0, 1) is
two or three orders larger than modes with high frequency (n = 2, 3). This feature
is similar to that found in the β-cascade discussed by Henningson, Lundbladh &
Johansson (1993) in their study on the bypass transition in plane Poiseuille flow.
In analogy we shall use here the term m-cascade. In the m-cascade, the disturbance
energy is mainly transferred through a route with increasing azimuthal wavenumber
m, according to

(±1,±1)⇒ (±2, 0)⇒ (±3,±1)⇒ (±4, 0)⇒· · · .

We also find from figures 17 and 18 that within the m-cascade the modes with
n = 0, such as (±2, 0), (±4, 0), (±6, 0), etc., have a large transient growth. For instance,
in figure 17(a) mode (±4, 0) appears to be the second largest mode.

From figures 17 and 18 we can also discern a different evolution for Av = 0.031 and
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Figure 18. Same as figure 17 for a different disturbance amplitude Av = 0.0325.

0.0325. For the smaller amplitude, most of the disturbance modes show a transient
growth followed by an exponential decay as soon as the energy peak is reached. For
the larger amplitude, the energy growth lasts for a longer distance. After the energy
peak has been reached the modes evolve at nearly a constant energy level and smaller
scale modes appear to become more important. For instance, 18(a) shows that mode
(±6, 0) becomes larger than mode (±4, 0) at the end of the computational domain.
This behaviour of the modes implies that the disturbance is nearly self-sustainable, a
basic feature of turbulence. As a result, we believe Av = 0.0325 is close to the critical
amplitude.

We have mentioned in the previous subsection that the characteristic feature of
the steady harmonics (±2, 0) is the generation of low-speed streaks which are defined
as areas where the local streamwise velocity is smaller than the average velocity:
ũ = u − U< 0. The generation of these streamwise streaks is caused by a so-called
‘lift-up’ mechanism (Landahl 1975) which results from a flow redistribution caused
by travelling vortex pairs. These vortex pairs, which in our case are generated by
the PSB disturbance, are illustrated in figure 19(a). Here we see that the vortex
pairs alternate along the upper and lower walls in the streamwise direction which
reflects that vortex pairs are formed only during the blowing phase of the imposed
disturbance. In figure 19(b) the associated streamwise streaks are shown.

As follows from figure 20 there is a clear difference in development of the low-speed
streaks for the two amplitudes Av = 0.031 and Av = 0.0325. In the former case the
low-speed streaks are highly elongated in the streamwise direction and keep a nearly
constant level until the end of our calculation domain is reached (see figure 20a).
For Av = 0.0325, however, the low-speed streaks no longer keep a constant level but
seem to decay in the streamwise direction, while at the same time some smaller scale
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structures in the form of streak oscillations appear as a consequence of the energy
m-cascade (see figure 20b).

The main contribution of these streamwise streaks is to modulate the basic flow and
the resulting instantaneous flow profile is highly distorted, exhibiting both azimuthal
and radial inflection points as shown in figure 21 and figure 22. Such a modulated
velocity field has been studied by Zikanov (1996) who found this flow to be highly
unstable to three-dimensional disturbances.
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6. Discussion on parameter dependence
For natural transition, the Reynolds number Re is the only independent parameter,

but for the case of triggered transition there are more independent parameters which
in our situation are the disturbance frequency ω, the disturbance amplitude Av , the
disturbance azimuthal wavenumber m, the disturbance shape function f(x) and the
width of the disturbance region d. Dauchot & Manneville (1997) argue that when
one parameter is varied while the others are kept fixed, a special path in phase space
is selected towards the final transition. If a ‘wrong’ path is selected, the transition
will never occur. So it seems pertinent to study triggered transition as a function
of various parameter groups. In our numerical simulation presented in the previous
section we have only considered the dependence on the disturbance amplitude Av for
a disturbance with Re = 3000, ω = 0.5, m = 1, d = π and f(x) as given in (2.6).
The reason for this choice was to mimic the experimental situation of Draad et al.
(1998) where the dependence on the disturbance amplitude was carefully studied for
a PSB disturbance with azimuthal wavenumber m = 1. The experimental situation of
Eliahou et al. (1998) is similar but for a PSB disturbance with m = 2.

Let us now consider the dependence on some of these disturbance parameters.
For this we restrict ourselves to results obtained with the EES technique. In principle
these results are only applicable for an infinitesimal disturbance amplitude, i.e. Av � 1.
However, they can also serve as some indication on what to expect in numerical and
experimental studies at larger finite disturbance amplitudes.

Reynolds number Re

To study the effect of the Reynolds number we have computed the case for
Re = 6000. The results for the disturbance energy are shown in comparison with the
results for Re = 3000 in figure 23. There is no significant change in the behaviour of
the fundamental mode (m, n) = (±1,±1) for both cases. On the other hand, the results
for the steady harmonic (±2, 0) show that the peak value of the disturbance energy
scales with Re2 and its position with Re. This result suggests that for the case that
transition depends only on the existence of transient growth of the steady harmonics
(±2, 0), the critical disturbance amplitude Avcr

becomes inversely proportional to
Reynolds number Re. This conclusion is qualitatively similar to the experimental
results obtained by Draad et al. (1998) who also find a Re−1 dependence for the
critical amplitude in some range of the disturbance frequency ω. However, one should
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Figure 24. Spatial evolution of the disturbance energy for ω = 2.5 (Re = 3000):
(a) Edis(x; 1, 1); (b) Edis(x; 2, 0).

note again that this conclusion has been obtained with the EES approach which in
principle is only valid for small disturbance amplitudes whereas the behaviour of Avcr

will most likely be also influenced by nonlinear interactions.
In a linear temporal analysis Bergström (1992) found that the transient energy

amplification is proportional to Re2 for the most amplified modes (the modes for
which the streamwise wavenumber α = 0). Our conclusion thus seems analogous to
these temporal results.

These results for the dependence of transition on Reynolds number also imply that
a numerical study will be quite difficult for a higher Reynolds number. Namely, a
longer pipe is needed for the numerical simulation since the transition position lies
farther downstream. At the same time, a higher Reynolds number demands higher
spatial resolution. The computational resources required for such simulation will thus
become extremely large and not feasible for even the most powerful supercomputers
available nowadays.

Disturbance frequency ω

In figure 24, the results for the disturbance energy are shown as obtained with
a higher disturbance frequency, i.e. ω = 2.5 as compared with the original value
ω = 0.5.

For the fundamental mode (±1,±1) illustrated in figure 24(a), we find a very strong
decay immediate downstream of the PSB region and then a nearly discontinuous
change to a smaller decay rate. This behaviour is quite different from the results for
ω = 0.5 as shown in figure 11(b) where the decay just after the disturbance region is
much slower.

For the steady harmonic (±2, 0) given in figure 24(b), the results for ω = 0.5
and 2.5 are also quite different. Almost no transient growth is found for the case
ω = 2.5 and as a result the peak value of this mode is four orders of magnitude
smaller than for ω = 0.5. This result seems also consistent with the temporal linear
analysis for the transient growth discussed by Bergström (1993b) who obtained the
result that amplification of the initial disturbance energy will occur only for streamwise
wavenumber α� 1 for which the spatial analogue is ω � 1 (the numerical simulation
of Lundbladh et al. 1994 showed such an analogy to be valid for plane Poiseuille
flow).
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Shape function f(x) and width of the slit d

Next we consider the influence of the shape function on the evolution of the flow. It
is very difficult in an experiment to accurately measure the disturbance shape function
f(x). One can perhaps estimate f(x) to lie in between the solution with free slip and
no-slip boundary conditions in the slit. The former leads to a constant step function
given by

f1(x) = 1
2
,

and the latter is the parabolic profile given by

f2(x) =
3

4

(
1− 4x2

d2

)
.

The choice for the subscripts is based on the convention that we denote the numerical
shape function (2.6) as f0(x). We note again that f0(x) is not based on a physical
argument but its C1 continuity is required to suppress the Gibbs phenomenon of the
spectral method used in our simulation. The amplitude of the three shape functions
have been adjusted such that the same mass flux is entering and leaving through the
pipe wall during each period, i.e. their integral across the slit is normalized to unity.

In figure 25 we show the results for the disturbance energy obtained with the three
shape functions. The total disturbance energy depends on the square of these shape
functions integrated across the slit. It is not difficult to show that this integral is
smallest for f1(x). This fact explains why we find the lowest values for Edis(x; 1, 1)
and Edis(x; 2, 0) for shape function f1(x). The original shape function (2.6) has the
largest energy. These results also support the hypothesis of Eliahou et al. (1998)
who ascribe the discrepancy between their experimental and theoretical results to a
possible difference between the experimental and theoretical shape functions.

These results for the dependence on the disturbance shape have been obtained for
a slit with a width of d = π. In the experiments of both Eliahou et al. (1998) and
Draad et al. (1998) the PSB region is much more narrow, i.e. d = 0.1212 in the case
of Eliahou et al. (1998) and d = 0.0275 for Draad et al. (1998). By means of the
EES method it is possible to explore the dependence of the solution on the width
d whereas this would have been nearly impossible for a full nonlinear DNS due to
resolution requirements.

The results obtained with the EES method for the same three shape functions as
discussed above but now for the width d = 0.0275 are shown in figure 26 (the shape of
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Figure 26. Spatial evolution of the disturbance energy for different shape functions: (a) Edis(x; 1, 1);
(b) Edis(x; 2, 0). The peak values of Edis(x; 2, 0) for different shape functions are denoted as small
circles, and correspond to f0, f2 and f1 from the largest one to the smallest. The width of PSB
region is d = 0.0275 (Re = 3000, ω = 0.5).

the solution for d = 0.1212 is nearly the same apart from a slightly different amplitude
and therefore not shown here). In this case the variation in the disturbance energy
between different shape functions is restricted to the PSB region and its immediate
vicinity. Further downstream of the PSB region the behaviour of Edis as function
of x is nearly the same for all cases. Therefore, we believe that for the experiments
the evolution of the disturbance should be quite insensitive to the details of the
disturbance shape.

We can estimate the total disturbance energy Edis(x) from a summation of Edis(x; 1,1)
and Edis(x; 2, 0). The results following from figure 25 for d = π then imply that for
Av < 1 the peak value of Edis(x) is determined by transient growth and located far
from the PSB region. On the other hand for d = 0.0275 the peak value of Edis(x) is
not determined by transient growth as follows from figure 26 and it is located inside
the PSB region. So in the experiments of Eliahou et al. (1998) and Draad et al. (1998),
transient growth may be not as important as in our numerical simulation.

7. Conclusion
With help of a full nonlinear direct numerical simulation based on a spectral

element model and of an eigenmode expansion solution, we have investigated the
spatial evolution of a disturbance imposed on Hagen–Poiseuille flow. The perturbation
is introduced in the flow by periodic suction and blowing through a narrow slit in the
pipe wall. To mimic the recent experiments of Draad et al. (1998), we have limited
ourselves to a disturbance with angular wavenumber m = 1. The frequency of the
periodic suction and blowing has been set equal to ω = 0.5. The amplitude of the
disturbance Av has been kept subcritical which means that no transition to turbulence
occurs. In particular we have tried to obtain results near the critical amplitude, i.e.
just before the flow becomes turbulent.

Based on these computational results we propose a transition scenario which is
illustrated in figure 27. The flow behaviour is described in terms of so-called flow
modes which are denoted by the number pair (m, n). The mode (±1,±1) has the
same angular wavenumber and frequency as the imposed disturbance, i.e m = 1 and
ω = 1× 0.5. It is therefore called the fundamental mode. The most important higher-
order modes turn out to be: first, (±2, 0), which has twice the angular wavenumber
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Figure 27. An illustration of the transition scenario in a cylindrical pipe as suggested by
the investigation carried out in this paper.

of the disturbance and zero frequency and which is called the steady harmonic; and
second, (0, 0), which is called the mean flow perturbation.

The following three cases based on the value of the disturbance amplitude can be
distinguished.

1. Av very small. The fundamental mode (after being excited) decays exponentially
as a result of a linear process. The steady harmonic after being excited by self-
interaction of the fundamental mode grows at first strongly as a result of transient
growth which itself is a linear process. After a maximum disturbance energy has been
reached, this steady harmonic also starts to decay exponentially.

2. Av intermediate. The behaviour of the fundamental and steady harmonic is
quite similar to the case for Av small, apart from the fact that transient growth is
not as strong. The transient growth results in strong (steady) low-speed streaks in the
streamwise velocity. The steady harmonic generates through self-interaction the mean
flow perturbation which then starts to influence the fundamental mode.

3. Av near critical. Also here the initial phase of evolution of the fundamental
and steady harmonics up to the generation of low-speed streaks is the same as for
intermediate Av . In this case, however, many higher-order modes are excited through
a so-called m-cascade. The result is that the low-speed streaks exhibit small-scale
oscillations.

It is known that as a result of a low-speed streak inflection points appear on the
instantaneous streamwise velocity. These are known to be highly unstable and the
small-scale oscillations found the near critical Av appear to be the first sign of this
instability. We therefore expect the flow to become turbulent for only a very small
increase of the disturbance amplitude for this case.

With help of the eigenmode expansion solution we have also considered the
influence of various flow and disturbance parameters. Based on the results obtained
for a higher Reynolds number we find that the critical amplitude for the transition
scenario discussed above scales as Re−1. For computations with a larger disturbance
frequency and with a more narrow slit we find that transient growth becomes small.
This implies that the critical amplitude in these cases must be larger than when
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m = 0 ǔ′= v̌ = w̌ = p̌ = 0
|m| = 1 ǔ = v̌′= w̌′= p̌ = 0, v̌ + imw̌ = 0
|m| = 2 ǔ = v̌ = w̌ = p̌ = 0, ǔ′ = 2v̌′ + imw̌′ = 0
|m| > 3 ǔ = v̌ = w̌ = p̌ = 0, ǔ′ = v̌′ = w̌′ = 0

Table 2. Central boundary conditions for (2.3).

transient growth plays a role in the critical amplitude. This seems in agreement with
the experimental data of Draad et al. (1998).

Our overall conclusion is that a transition scenario based on transient growth exists
in cylindrical pipe flow. However, our investigation of the parameter dependence also
suggests that other transition scenarios cannot be excluded. This is also indicated by
the experiments of Draad et al. (1998) which show a scaling of the critical amplitude
according to Re−2/3 and this cannot be explained by transient growth. Other transition
scenarios would be in agreement with the viewpoint of Dauchot & Manneville (1997)
but the search for such scenarios is left for further study.
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Appendix A. Boundary condition at r = 0

When spectral methods are used, the solution of (2.3) is transformed into Fourier
spectral space which for the azimuthal direction implies

v(x, r, θ, t) =
∑
m

v̌(x, r, t;m)eimθ, p(x, r, θ, t) =
∑
m

p̌(x, r, t;m)eimθ. (A 1)

The conditions to be imposed at r = 0 vary as function of azimuthal wavenumber m
and they are given in table 2. Similar results on these conditions have been presented
by O’Sullivan & Breuer (1994a). These authors, however, give only minimal informa-
tion on how these relations are obtained. Therefore, we present in this Appendix a
more detailed derivation of these centreline conditions.

As follows from (2.3), the divergence term ∇ · v, the pressure gradient term ∇p, the
nonlinear term v · ∇v and the Laplacian term ∇2v are all singular at r = 0. In order
to find an analytical extension, or in another words to obtain a bounded solution
at r = 0, the singularity at r = 0 must be removable. To achieve this, all singular
terms must have a finite limit for r = 0. By applying L’Hôpital’s rule the following
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conditions can be obtained:

∇ · v < ∞ ⇒ v + wθ = 0,
∇p < ∞ ⇒ pθ = 0,

v · ∇v < ∞ ⇒ wuθ = 0, wvθ − w2 = 0, wwθ + vw = 0,
∇2v < ∞ ⇒ uθθ = 0, vθθ − v − 2wθ = 0, wθθ − w + 2vθ = 0,

u′θθ + u′ = 0, v′θθ − 2w′θ = 0, w′θθ + 2v′θ = 0.

Here we have used the subscripts θ and θθ to denote the first- and second-order
derivatives with respect to θ and a prime ′ to denote the first-order derivative with
respect to r.

By applying (A 1), the above conditions can be transformed into Fourier spectral
space and be simplified as

∇ · v < ∞ ⇒ v̌+imw̌ = 0
∇p < ∞ ⇒ imp̌ = 0
∇2v < ∞ ⇒ −m2 ǔ = 0

−(m2 − 1)ǔ′ = 0

,
⇒
⇒
⇒

p̌ = 0
ǔ = 0
ǔ′ = 0

when
when
when

m 6= 0,
m 6= 0,
|m| 6= 1,

−(m2 + 1)v̌−2imw̌ = 0
−(m2 + 1)w̌+2imv̌ = 0

}
⇒
{

v̌ = w̌ = 0
v̌ + imw̌ = 0

when
when

|m| 6= 1,
|m| = 1,

−m2 v̌′ − 2imw̌′ = 0
−m2 w̌′ + 2imv̌′ = 0

}
⇒
{

v̌′ = w̌′ = 0
2v̌′ + imw̌′ = 0

when
when

|m| 6= 2,
|m| = 2,

where the double prime ′′ denotes the second-order derivative with respect to r.

We still require a condition for p̌ when m = 0. To obtain this we apply the above
results to the r-momentum equation for m = 0. The result reads

v̌t +Nr = −p̌′ + 1

Re

(
3
2
v̌′′ + v̌xx

)
where the subscript t denotes the first-order derivative with respect to t, xx denotes
the second-order derivatives with respect to x. Nr is the nonlinear term and can be
proven to be zero at r = 0, so that with v̌ = 0 when m = 0, p̌′ = 3

2
v̌′′/Re at r = 0. We

can simplify this result further by taking the first-order r-derivative of the continuity
equation with m = 0. The result reads

ǔ′x − v̌

r2
+
v̌′

r
+ v̌′′ = 0,

which leads to v′′ = 0. The condition at the centreline for p̌ when m = 0 thus becomes

p̌′ = 0.

At this stage we have derived all of the conditions listed in table 2.

It is furthermore worth pointing out that the conditions obtained above are based
on the linear terms only. It can be shown that the restriction for the nonlinear term
v · ∇v < ∞ is automatically satisfied by applying the linear results listed in table 2.
This means that our results apply both to the nonlinear and the linearized Navier–
Stokes equations. The extension of the above results to problems (3.4) and (B 2) is
straightforward. A similar approach can by applied to problem (B 5) and here only
the final results are listed in table 3.
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m = 0 G′α1 =Gα2 =Gα3 =G′α4 =Gα5 =Gα6 =0

|m|= 1 Gα1 =G′α2 =G′α3 =Gα4 =G′α5 =G′α6 =0, Gα2 + imGα3 =Gα5 + imGα6 = 0

|m|= 2 Gα1 =Gα2 =Gα3 =Gα4 =Gα5 =Gα6 =0, G′α4 =2G′α2 +imG′α3 =2G′α5 +imG′α6 =0

|m|> 3 Gα1 =Gα2 =Gα3 =Gα4 =Gα5 =Gα6 =0, G′α2 =G′α3 =G′α4 =G′α5 =G′α6 =0

Table 3. Central boundary conditions for (B 5).

Appendix B. Spectrum of the spatial linear evolution operatorL for
Hagen–Poiseuille flow

The spatial linear operator L which appears in (3.4) is a differential operator and
can be written as

L(·) ≡
2∑

k= 0

Ck

dk(·)
drk

, (B 1)

where Ck(k = 0, 1, 2) are 6× 6 coefficient matrices which take the form

C0 =


0 −1/r −im/r 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1

m2/r2 − inωRe −ReU/r + ReU ′ −imReU/r 0 1/r im/r
0 (m2 + 1)/r2 − inωRe 2im/r2 0 ReU 0
0 −2im/r2 (m2 + 1)/r2 − inωRe −im/r 0 ReU

 ,

C1 = −


0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

1/r ReU 0 0 −1 0
0 1/r 0 1 0 0
0 0 1/r 0 0 0

 , C2 = −


0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

 .

In this Appendix, we first investigate the eigenvalue system associated with the
operator L. Then the eigenspectrum of L is given for the fundamental modes
(m, n) = (±1,±1), the steady harmonics (±2, 0) and the mean perturbation mode
(0, 0). The possible influence of transient growth on these modes is discussed. Finally
we present a discussion on the contribution of the various eigenmodes to the evolution
of the disturbance as a function of the axial coordinate x.

B.1. Eigenvalue system

We can write the eigenvalue system corresponding to operator L as

iαFα =LFα. (B 2)

The operatorL is complete and its eigenvectors Fα span a Hilbert spaceH = L2[0, 1].
For Fα, Fβ ∈ H, the inner product is defined as

(Fα, Fβ) ≡
∫ 1

0

rF †βFα dr, (B 3)

where the superscript † denotes the Hermitian adjoint matrix. At r = 0, Fα is bounded
(see Appendix A) and at r = 1 it satisfies the following Dirichlet boundary conditions:

r = 1 : Fα1 = Fα2 = Fα3 = 0. (B 4)
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The operator L is not self-adjoint, so (Fα, Fβ) 6= δαβ . The adjoint eigenvalue system
is given by

(iα)∗Gα =L∗Gα, (B 5)

where the adjoint operator L∗ is defined as

L∗(·) ≡
2∑

k= 0

(−1)k
1

r

dk(rC†k(·))
drk

. (B 6)

At r = 0, Gα is also bounded (see Appendix A, table 3) and at r = 1, an adjoint
boundary condition should be satisfied, given by

r = 1 : Gα4 = Gα5 = Gα6 = 0. (B 7)

The orthogonality relation then becomes

(Fα,Gβ) ≡
∫ 1

0

rG†βFα dr = δαβ. (B 8)

There are four independent parameters for the eigenvalue problem (B 2), (B 4) and
(B 5), (B 7): the azimuthal wavenumber m, the basic frequency ω, the harmonics of
the basic frequency indicated by n which denotes the harmonic nω and the Reynolds
number Re. For the basic frequency we have taken here ω = 0.5 and for the Reynolds
number Re = 3000. The eigenvalue problem for the remaining parameters (m, n) has
been solved numerically by a standard Chebyshev collocation method. For m = ±1,
256 collocation points are used and for m 6= ±1, 128 collocation points. We have
checked extensively that the obtained eigenvalues have indeed converged.

B.2. Spectra of operator L
The spectra of L are sets of discrete points in complex plane. In this subsection
we focus on the spectra for three important cases of the parameter group (m, n):
(m, n) = (±1,±1), (±2, 0) and (0, 0). We will use L(m,n) to denote the L operator for
mode (m, n).

Spectra for fundamental modes (±1,±1)

The mode (m, n) = (1, 1) is one of the four fundamental modes (±1,±1), with
given Reynolds number Re and fundamental frequency ω. It can be shown that the
eigenspectrum for L(−1,1) is the same as for L(1,1) (the corresponding eigenfunctions
are different only in terms of the sign of the components ŵ and ŵx). The eigenvalues
and eigenfunctions for the operators L(−1,−1) and L(1,−1) are conjugate to L(1,1) and
L(−1,1) respectively.

First we show in figure 28 an overall view of the eigenspectrum for L(1,1). The
eigenmodes in the first quadrant have been studied carefully by Tumin (1996). The
eigenmodes in the other quadrants are not as well documented but we will show
later in §B.3 that these eigenmodes are important to obtain correct results for the
evolution of the disturbance.

Since the operator L is not self-adjoint, it can support transient growth of initial
disturbance energy; this can be can be illustrated by the ε-pseudospectrum of L.
There are several equivalent definitions for the ε-pseudospectrum and here we use
the following one: the ε-pseudospectrum Λε(L) of a closed operator L is a set of
complex numbers z which satisfies ‖zI −L‖ 6 ε with ‖ · ‖ the norm induced by
the inner product (B 3) and I the unit operator. The Λε(L) are nested and Λ0(L)
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Figure 28. Spectrum of operator L(1,1) for (ω,Re) = (0.5, 3000). αr and αi are the real and
imaginary part of the eigenvalue α respectively.
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represent the spectrum and the contour lines represent the outer boundaries of the ε-pseudospectrum
where the values of the contour lines give the ε.

is actually the eigenspectrum of L. Transient energy growth is possible when there
exists at least one ε for which Λε(L) extends to the unstable half-plane and satisfies
inequality†

γε ≡ sup
ε> 0

|β(ε)|
ε

> 1,

where β(ε) is the minimum of the imaginary part of Λε(L).
In figure 29 the ε-pseudospectrum of L(1,1) is shown. We have restricted ourselves

to show only a part of the first quadrant because the pseudospectrum in the other

† Note that the energy here associated with the norm ‖ · ‖ is different from the energy Edis

introduced in § 5.1, but both of them can indicate the growth of a disturbance.
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Figure 30. Spectrum of operator L(0,0) (a) and L(2,0) (b) for Re = 3000.
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Figure 31. Spectrum and ε-pseudospectrum of L(2,0) for Re = 3000. The small dots •
represent the spectrum and the contour lines represent the outer boundaries of the
ε-pseudospectrum.

regions does not indicate any transient growth. From this figure we can estimate
|β(10−1)| ∼ 0.9 which implies γ10−1 > 1 so that the transient growth is possible. For
more information about the ε-pseudospectrum and its relationship with transient
growth for Hagen–Poiseuille flow, refer to Schmid & Henningson (1994).

Spectra for modes (±2, 0) and (0, 0)

In figure 30, the eigenspectra of (m, n) = (0, 0) and (2, 0) are shown for Re = 3000.
The eigenspectrum of (−2, 0) is as same as (2, 0). The ε-pseudospectrum of (2, 0) is
shown in figure 31. We can estimate |β(0.05)| ∼ 0.3 from the figure, so γ0.05 > 1 and
transient energy growth is possible (see the previous subsection for the explanation
of the ε-pseudospectrum).

B.3. Evolution of the eigenmodes

Spatial modes can propagate both downstream and upstream while growing or
decaying. In principle we can judge the propagation properties of these modes by
studying the group velocity cg = ∂ω/∂αr (see Drazin & Reid 1981, p. 345–353). The
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Figure 32. Spatial evolution of the disturbance energy Edis(x; 1, 1) (Re = 3000, ω = 0.5; two
dash-dotted vertical lines indicate the disturbance region). For the DNS simulation, the disturbance
amplitude Av = 10−3; for the eigenmode expansion solution of (3.7), there are three different
realizations: EES-1: 1, 2-quadrant modes propagate downstream and 3, 4-quadrant modes up-
stream; EES-2: 1-quadrant modes propagate downstream and 3-quadrant modes upstream; EES-3:
1, 2-quadrant modes propagate downstream and no mode propagates upstream.

group velocity, however, can be computed only when the dispersion relation F(ω, α)
is known which in our situation is not easy to find.

All experimental and theoretical results, however, suggest that Hagen–Poiseuille
flow is linearly stable and this is supported by our own DNS results for Av � 1.
This implies that all eigenvalues in the 1- and 2-quadrants (i.e. αi > 0) must be
downstream propagating and all eigenvalues in the 3- and 4-quadrants (i.e. αi < 0)
upstream propagating. This has been checked by means of our EES. For the case
EES-1 shown in figure 32, we have taken in (3.9) all eigenvalues in the 1- and 2-
quadrants as downstream propagating and all eigenvalues in the 3- and 4-quadrants
as upstream propagating. From the close agreement with the DNS results shown
in figure 32, we conclude that our assumption regarding the propagation direction
of the eigenvalues is indeed correct. Moreover, all eigenvalues are needed to obtain
a good approximation of the flow. This is illustrated by case EES-2 also shown in
figure 32 where only eigenvalues in the quadrants 1 and 3 have been taken into
account. There is a clear difference for this case with the full DNS results especially
in the neighbourhood of the perturbation region.

Although the upstream propagating modes have been seldom studied, they have
been found also in other cases than Hagen–Poiseuille flow. For the boundary layer,
upstream propagating modes have been studied by Ashpis & Reshotko (1990). These
authors maintain that the upstream propagating modes decay much faster than the
downstream propagating modes and this conclusion seems consistent with our results
for Hagen–Poiseuille flow.

From figure 32 we see that when the upstream propagating modes are removed from
the EES computation, i.e. case EES-3, there is no apparent difference in the disturbance
energy of mode (±1,±1) downstream of the perturbation region. This result should
not lead us to the conclusion that the upstream propagating modes ofL(±1,±1) have no
downstream effects at all since it is possible that by nonlinear interaction the upstream
propagating modes may influence the downstream propagating modes. The occurrence
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of this downstream effect of the upstream propagating modes is illustrated in figure 33
where the disturbance energy Edis is given as a function of x for the modes (0, 0)
and (±2, 0) which are generated by the quadratic self-interaction of (±1,±1). We see
that the inclusion of the upstream propagating modes in the computation of (±1,±1)
has a clear influence on the magnitude of the (0, 0) and (±2, 0) modes. Therefore,
one should include all modes, both the upstream and downstream propagating ones,
when one computes the evolution of the disturbance.

To realize that these upstream propagating modes exist is not only important for
a better description of the disturbance evolution but it is also important for the
implementation of our numerical simulations. Namely, in order to generate a non-
reflecting outflow condition a fringe method has been used which is very efficient
in damping the disturbances that propagate downstream out of the computational
domain at the rightmost cross-section (see § 4.1, § 4.3). However, the fringe region
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does not prohibit reflection of the upstream propagating modes at the leftmost cross-
section (the inflow cross-section). Although the reflection is very weak, the generated
noise can be amplified when it is propagating downstream. This has been investigated
with help of a special DNS (DNS-2) for which the left edge of the PSB region
coincides with the inflow cross-section, i.e. x∗c − 1

2
d = 0 (see § 4.1 for a definition of

x∗). The results are shown in figure 34. We see that the DNS-2 data differ from the
EES results while the agreement with the EES is excellent for the DNS-1 data for
which x∗c − 1

2
d = π, i.e. the left edge of the disturbance region is still a distance π

away from the left edge of the computational domain. In the latter case the upstream
propagating modes can decay before the leftmost boundary is reached. Therefore, in
all our numerical simulations we have used the location for the disturbance region as
in DNS-1.

Appendix C. Derivation of (3.8) in §3
In this Appendix we provide the details of the eigenmode expansion procedure to

obtain (3.8). Because the boundary condition (3.5) is non-homogenous for (±1,±1),
we have to pay special attention to the expansion of (3.4) because a direct substitution
of (3.6) into (3.7) is not possible.

From the expansion (3.6) and the orthogonality relation (B 6) we obtain that

Xα =

∫ 1

0

rG†αF dr. (C 1)

Suppose we can expand the left- and right-hand sides of (3.7) as

∂F

∂x
=
∑
α

YαFα, LF =
∑
α

ZαFα,

where the coefficient functions Yα(x) and Zα(x) will be determined in the following.
As a result of the linear independence of different eigenmodes Fα, we then know that

Yα = Zα. (C 2)

By applying the orthogonality relation (B 6) to Yα(x) we find

Yα =

∫ 1

0

rG†α

(
∂F

∂x

)
dr =

∂

∂x

(∫ 1

0

rG†αF dr

)
=

dXα

dx
.

Taking a similar approach and using the definition of L given by (B 1), we obtain

Zα =

∫ 1

0

rG†α (LF ) dr =

∫ 1

0

rG†α

(
C0F +C1

∂F

∂r
+C2

∂2F

∂r2

)
dr

=

∫ 1

0

[
(rC†0Gα)†F + (rC†1Gα)† ∂F∂r + (rC†2Gα)† ∂

2F

∂r2

]
dr.

By integrating by parts the first-order r-derivative term of the above equation, we
find ∫ 1

0

(rC†1Gα)† ∂F∂r dr = [(rC†1Gα)†F ]
∣∣1
0
−
∫ 1

0

d(rC†1Gα)†
dr

F dr,
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and for the second-order r-derivative term∫ 1

0

(rC†2Gα)† ∂
2F

∂r2
dr =

[
−d(rC†2Gα)†

dr
F + (rC†2Gα)† ∂F∂r

]∣∣∣∣∣
1

0

+

∫ 1

0

d2(rC†2Gα)†
dr2

F dr.

Combining these results we obtain

Zα =

∫ 1

0

[
(rC†0Gα)− d(rC†1Gα)

dr
+

d2(rC†2Gα)
dr2

]†
F dr

+

[
(rC†1Gα)†F − d(rC†2Gα)†

dr
F + (rC†2Gα)† ∂F∂r

]∣∣∣∣∣
1

0

.

Next we apply the definition for the adjoint operator given by (B 5) and (B 6) and the
boundary conditions of Gα and F given by (B 7) and (3.5). As a result we obtain

Zα =

∫ 1

0

r(L∗Gα)†F dr + AvCαf =

∫ 1

0

riαG†αF dr + AvCαf = iαXα + AvCαf,

where Cα = −φmnG∗α1|r= 1 and where f is the PSB shape function (2.6). Finally from
(C 2) we obtain

dXα

dx
= iαXα + AvCαf.
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